3.491 \(\int \frac{1}{x^5 \sqrt{-1+x^3}} \, dx\)

Optimal. Leaf size=294 \[ \frac{5 (1-x) \sqrt{\frac{x^2+x+1}{\left (-x-\sqrt{3}+1\right )^2}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{-x+\sqrt{3}+1}{-x-\sqrt{3}+1}\right ),4 \sqrt{3}-7\right )}{4 \sqrt{2} \sqrt [4]{3} \sqrt{-\frac{1-x}{\left (-x-\sqrt{3}+1\right )^2}} \sqrt{x^3-1}}+\frac{5 \sqrt{x^3-1}}{8 \left (-x-\sqrt{3}+1\right )}+\frac{5 \sqrt{x^3-1}}{8 x}+\frac{\sqrt{x^3-1}}{4 x^4}-\frac{5 \sqrt [4]{3} \sqrt{2+\sqrt{3}} (1-x) \sqrt{\frac{x^2+x+1}{\left (-x-\sqrt{3}+1\right )^2}} E\left (\sin ^{-1}\left (\frac{-x+\sqrt{3}+1}{-x-\sqrt{3}+1}\right )|-7+4 \sqrt{3}\right )}{16 \sqrt{-\frac{1-x}{\left (-x-\sqrt{3}+1\right )^2}} \sqrt{x^3-1}} \]

[Out]

(5*Sqrt[-1 + x^3])/(8*(1 - Sqrt[3] - x)) + Sqrt[-1 + x^3]/(4*x^4) + (5*Sqrt[-1 + x^3])/(8*x) - (5*3^(1/4)*Sqrt
[2 + Sqrt[3]]*(1 - x)*Sqrt[(1 + x + x^2)/(1 - Sqrt[3] - x)^2]*EllipticE[ArcSin[(1 + Sqrt[3] - x)/(1 - Sqrt[3]
- x)], -7 + 4*Sqrt[3]])/(16*Sqrt[-((1 - x)/(1 - Sqrt[3] - x)^2)]*Sqrt[-1 + x^3]) + (5*(1 - x)*Sqrt[(1 + x + x^
2)/(1 - Sqrt[3] - x)^2]*EllipticF[ArcSin[(1 + Sqrt[3] - x)/(1 - Sqrt[3] - x)], -7 + 4*Sqrt[3]])/(4*Sqrt[2]*3^(
1/4)*Sqrt[-((1 - x)/(1 - Sqrt[3] - x)^2)]*Sqrt[-1 + x^3])

________________________________________________________________________________________

Rubi [A]  time = 0.0775788, antiderivative size = 294, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 13, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.308, Rules used = {325, 304, 219, 1879} \[ \frac{5 \sqrt{x^3-1}}{8 \left (-x-\sqrt{3}+1\right )}+\frac{5 \sqrt{x^3-1}}{8 x}+\frac{\sqrt{x^3-1}}{4 x^4}+\frac{5 (1-x) \sqrt{\frac{x^2+x+1}{\left (-x-\sqrt{3}+1\right )^2}} F\left (\sin ^{-1}\left (\frac{-x+\sqrt{3}+1}{-x-\sqrt{3}+1}\right )|-7+4 \sqrt{3}\right )}{4 \sqrt{2} \sqrt [4]{3} \sqrt{-\frac{1-x}{\left (-x-\sqrt{3}+1\right )^2}} \sqrt{x^3-1}}-\frac{5 \sqrt [4]{3} \sqrt{2+\sqrt{3}} (1-x) \sqrt{\frac{x^2+x+1}{\left (-x-\sqrt{3}+1\right )^2}} E\left (\sin ^{-1}\left (\frac{-x+\sqrt{3}+1}{-x-\sqrt{3}+1}\right )|-7+4 \sqrt{3}\right )}{16 \sqrt{-\frac{1-x}{\left (-x-\sqrt{3}+1\right )^2}} \sqrt{x^3-1}} \]

Antiderivative was successfully verified.

[In]

Int[1/(x^5*Sqrt[-1 + x^3]),x]

[Out]

(5*Sqrt[-1 + x^3])/(8*(1 - Sqrt[3] - x)) + Sqrt[-1 + x^3]/(4*x^4) + (5*Sqrt[-1 + x^3])/(8*x) - (5*3^(1/4)*Sqrt
[2 + Sqrt[3]]*(1 - x)*Sqrt[(1 + x + x^2)/(1 - Sqrt[3] - x)^2]*EllipticE[ArcSin[(1 + Sqrt[3] - x)/(1 - Sqrt[3]
- x)], -7 + 4*Sqrt[3]])/(16*Sqrt[-((1 - x)/(1 - Sqrt[3] - x)^2)]*Sqrt[-1 + x^3]) + (5*(1 - x)*Sqrt[(1 + x + x^
2)/(1 - Sqrt[3] - x)^2]*EllipticF[ArcSin[(1 + Sqrt[3] - x)/(1 - Sqrt[3] - x)], -7 + 4*Sqrt[3]])/(4*Sqrt[2]*3^(
1/4)*Sqrt[-((1 - x)/(1 - Sqrt[3] - x)^2)]*Sqrt[-1 + x^3])

Rule 325

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a*
c*(m + 1)), x] - Dist[(b*(m + n*(p + 1) + 1))/(a*c^n*(m + 1)), Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Free
Q[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 304

Int[(x_)/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, -Dist[(S
qrt[2]*s)/(Sqrt[2 - Sqrt[3]]*r), Int[1/Sqrt[a + b*x^3], x], x] + Dist[1/r, Int[((1 + Sqrt[3])*s + r*x)/Sqrt[a
+ b*x^3], x], x]] /; FreeQ[{a, b}, x] && NegQ[a]

Rule 219

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(2*Sqr
t[2 - Sqrt[3]]*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 - Sqrt[3])*s + r*x)^2]*EllipticF[ArcSin[((1 + Sqrt[3
])*s + r*x)/((1 - Sqrt[3])*s + r*x)], -7 + 4*Sqrt[3]])/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[-((s*(s + r*x))/((1 - S
qrt[3])*s + r*x)^2)]), x]] /; FreeQ[{a, b}, x] && NegQ[a]

Rule 1879

Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Simplify[((1 + Sqrt[3])*d)/c]]
, s = Denom[Simplify[((1 + Sqrt[3])*d)/c]]}, Simp[(2*d*s^3*Sqrt[a + b*x^3])/(a*r^2*((1 - Sqrt[3])*s + r*x)), x
] + Simp[(3^(1/4)*Sqrt[2 + Sqrt[3]]*d*s*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 - Sqrt[3])*s + r*x)^2]*Elli
pticE[ArcSin[((1 + Sqrt[3])*s + r*x)/((1 - Sqrt[3])*s + r*x)], -7 + 4*Sqrt[3]])/(r^2*Sqrt[a + b*x^3]*Sqrt[-((s
*(s + r*x))/((1 - Sqrt[3])*s + r*x)^2)]), x]] /; FreeQ[{a, b, c, d}, x] && NegQ[a] && EqQ[b*c^3 - 2*(5 + 3*Sqr
t[3])*a*d^3, 0]

Rubi steps

\begin{align*} \int \frac{1}{x^5 \sqrt{-1+x^3}} \, dx &=\frac{\sqrt{-1+x^3}}{4 x^4}+\frac{5}{8} \int \frac{1}{x^2 \sqrt{-1+x^3}} \, dx\\ &=\frac{\sqrt{-1+x^3}}{4 x^4}+\frac{5 \sqrt{-1+x^3}}{8 x}-\frac{5}{16} \int \frac{x}{\sqrt{-1+x^3}} \, dx\\ &=\frac{\sqrt{-1+x^3}}{4 x^4}+\frac{5 \sqrt{-1+x^3}}{8 x}+\frac{5}{16} \int \frac{1+\sqrt{3}-x}{\sqrt{-1+x^3}} \, dx-\frac{1}{8} \left (5 \sqrt{\frac{1}{2} \left (2+\sqrt{3}\right )}\right ) \int \frac{1}{\sqrt{-1+x^3}} \, dx\\ &=\frac{5 \sqrt{-1+x^3}}{8 \left (1-\sqrt{3}-x\right )}+\frac{\sqrt{-1+x^3}}{4 x^4}+\frac{5 \sqrt{-1+x^3}}{8 x}-\frac{5 \sqrt [4]{3} \sqrt{2+\sqrt{3}} (1-x) \sqrt{\frac{1+x+x^2}{\left (1-\sqrt{3}-x\right )^2}} E\left (\sin ^{-1}\left (\frac{1+\sqrt{3}-x}{1-\sqrt{3}-x}\right )|-7+4 \sqrt{3}\right )}{16 \sqrt{-\frac{1-x}{\left (1-\sqrt{3}-x\right )^2}} \sqrt{-1+x^3}}+\frac{5 (1-x) \sqrt{\frac{1+x+x^2}{\left (1-\sqrt{3}-x\right )^2}} F\left (\sin ^{-1}\left (\frac{1+\sqrt{3}-x}{1-\sqrt{3}-x}\right )|-7+4 \sqrt{3}\right )}{4 \sqrt{2} \sqrt [4]{3} \sqrt{-\frac{1-x}{\left (1-\sqrt{3}-x\right )^2}} \sqrt{-1+x^3}}\\ \end{align*}

Mathematica [C]  time = 0.0056312, size = 40, normalized size = 0.14 \[ -\frac{\sqrt{1-x^3} \, _2F_1\left (-\frac{4}{3},\frac{1}{2};-\frac{1}{3};x^3\right )}{4 x^4 \sqrt{x^3-1}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x^5*Sqrt[-1 + x^3]),x]

[Out]

-(Sqrt[1 - x^3]*Hypergeometric2F1[-4/3, 1/2, -1/3, x^3])/(4*x^4*Sqrt[-1 + x^3])

________________________________________________________________________________________

Maple [A]  time = 0.017, size = 198, normalized size = 0.7 \begin{align*}{\frac{1}{4\,{x}^{4}}\sqrt{{x}^{3}-1}}+{\frac{5}{8\,x}\sqrt{{x}^{3}-1}}-{\frac{-{\frac{15}{2}}-{\frac{5\,i}{2}}\sqrt{3}}{8}\sqrt{{\frac{-1+x}{-{\frac{3}{2}}-{\frac{i}{2}}\sqrt{3}}}}\sqrt{{\frac{1}{{\frac{3}{2}}-{\frac{i}{2}}\sqrt{3}} \left ( x+{\frac{1}{2}}-{\frac{i}{2}}\sqrt{3} \right ) }}\sqrt{{\frac{1}{{\frac{3}{2}}+{\frac{i}{2}}\sqrt{3}} \left ( x+{\frac{1}{2}}+{\frac{i}{2}}\sqrt{3} \right ) }} \left ( \left ({\frac{3}{2}}-{\frac{i}{2}}\sqrt{3} \right ){\it EllipticE} \left ( \sqrt{{\frac{-1+x}{-{\frac{3}{2}}-{\frac{i}{2}}\sqrt{3}}}},\sqrt{{\frac{{\frac{3}{2}}+{\frac{i}{2}}\sqrt{3}}{{\frac{3}{2}}-{\frac{i}{2}}\sqrt{3}}}} \right ) + \left ( -{\frac{1}{2}}+{\frac{i}{2}}\sqrt{3} \right ){\it EllipticF} \left ( \sqrt{{\frac{-1+x}{-{\frac{3}{2}}-{\frac{i}{2}}\sqrt{3}}}},\sqrt{{\frac{{\frac{3}{2}}+{\frac{i}{2}}\sqrt{3}}{{\frac{3}{2}}-{\frac{i}{2}}\sqrt{3}}}} \right ) \right ){\frac{1}{\sqrt{{x}^{3}-1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^5/(x^3-1)^(1/2),x)

[Out]

1/4*(x^3-1)^(1/2)/x^4+5/8*(x^3-1)^(1/2)/x-5/8*(-3/2-1/2*I*3^(1/2))*((-1+x)/(-3/2-1/2*I*3^(1/2)))^(1/2)*((x+1/2
-1/2*I*3^(1/2))/(3/2-1/2*I*3^(1/2)))^(1/2)*((x+1/2+1/2*I*3^(1/2))/(3/2+1/2*I*3^(1/2)))^(1/2)/(x^3-1)^(1/2)*((3
/2-1/2*I*3^(1/2))*EllipticE(((-1+x)/(-3/2-1/2*I*3^(1/2)))^(1/2),((3/2+1/2*I*3^(1/2))/(3/2-1/2*I*3^(1/2)))^(1/2
))+(-1/2+1/2*I*3^(1/2))*EllipticF(((-1+x)/(-3/2-1/2*I*3^(1/2)))^(1/2),((3/2+1/2*I*3^(1/2))/(3/2-1/2*I*3^(1/2))
)^(1/2)))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{x^{3} - 1} x^{5}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^5/(x^3-1)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(x^3 - 1)*x^5), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{x^{3} - 1}}{x^{8} - x^{5}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^5/(x^3-1)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(x^3 - 1)/(x^8 - x^5), x)

________________________________________________________________________________________

Sympy [A]  time = 1.05605, size = 34, normalized size = 0.12 \begin{align*} - \frac{i \Gamma \left (- \frac{4}{3}\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{4}{3}, \frac{1}{2} \\ - \frac{1}{3} \end{matrix}\middle |{x^{3}} \right )}}{3 x^{4} \Gamma \left (- \frac{1}{3}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**5/(x**3-1)**(1/2),x)

[Out]

-I*gamma(-4/3)*hyper((-4/3, 1/2), (-1/3,), x**3)/(3*x**4*gamma(-1/3))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{x^{3} - 1} x^{5}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^5/(x^3-1)^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(x^3 - 1)*x^5), x)